Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 12(1): 2145, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1692555

ABSTRACT

The most common host entry point of human adapted coronaviruses (CoV) including SARS-CoV-2 is through the initial colonization in the nostril and mouth region which is responsible for spread of the infection. Most recent studies suggest that the commercially available oral and nasal rinse products are effective in inhibiting the viral replication. However, the anti-viral mechanism of the active ingredients present in the oral rinses have not been studied. In the present study, we have assessed in vitro enzymatic inhibitory activity of active ingredients in the oral mouth rinse products: aloin A and B, chlorhexidine, eucalyptol, hexetidine, menthol, triclosan, methyl salicylate, sodium fluoride and povidone, against two important proteases of SARS-CoV-2 PLpro and 3CLpro. Our results indicate only aloin A and B effectively inhibited proteolytic activity of PLpro with an IC50 of 13.16 and 16.08 µM. Interestingly, neither of the aloin isoforms inhibited 3CLpro enzymatic activity. Computational structural modelling of aloin A and B interaction with PLpro revealed that, both aloin isoforms form hydrogen bond with Tyr268 of PLpro, which is critical for their proteolytic activity. Furthermore, 100 ns molecular dynamics (MD) simulation studies predicted that both aloin isoforms have strong interaction with Glu167, which is required for PLpro deubiquitination activity. Our results from the in vitro deubiquitinase inhibition assay show that aloin A and B isomers exhibit deubiquitination inhibitory activity with an IC50 value of 15.68 and 17.51 µM, respectively. In conclusion, the isoforms of aloin inhibit both proteolytic and the deubiquitinating activity of SARS-CoV-2 PLpro, suggesting potential in inhibiting the replication of SARS-CoV-2 virus.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Emodin/analogs & derivatives , SARS-CoV-2/enzymology , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Emodin/chemistry , Emodin/metabolism , Emodin/pharmacology , Humans , Molecular Dynamics Simulation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , SARS-CoV-2/isolation & purification , Vero Cells
2.
Sci Rep ; 10(1): 17699, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-880703

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) (EC:3.4.17.23) is a transmembrane protein which is considered as a receptor for spike protein binding of novel coronavirus (SARS-CoV2). Since no specific medication is available to treat COVID-19, designing of new drug is important and essential. In this regard, in silico method plays an important role, as it is rapid and cost effective compared to the trial and error methods using experimental studies. Natural products are safe and easily available to treat coronavirus affected patients, in the present alarming situation. In this paper five phytochemicals, which belong to flavonoid and anthraquinone subclass, have been selected as small molecules in molecular docking study of spike protein of SARS-CoV2 with its human receptor ACE2 molecule. Their molecular binding sites on spike protein bound structure with its receptor have been analyzed. From this analysis, hesperidin, emodin and chrysin are selected as competent natural products from both Indian and Chinese medicinal plants, to treat COVID-19. Among them, the phytochemical hesperidin can bind with ACE2 protein and bound structure of ACE2 protein and spike protein of SARS-CoV2 noncompetitively. The binding sites of ACE2 protein for spike protein and hesperidin, are located in different parts of ACE2 protein. Ligand spike protein causes conformational change in three-dimensional structure of protein ACE2, which is confirmed by molecular docking and molecular dynamics studies. This compound modulates the binding energy of bound structure of ACE2 and spike protein. This result indicates that due to presence of hesperidin, the bound structure of ACE2 and spike protein fragment becomes unstable. As a result, this natural product can impart antiviral activity in SARS CoV2 infection. The antiviral activity of these five natural compounds are further experimentally validated with QSAR study.


Subject(s)
Betacoronavirus/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Allosteric Regulation , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Anthraquinones/chemistry , Anthraquinones/metabolism , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Emodin/chemistry , Emodin/metabolism , Humans , Molecular Docking Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL